Sub-Sets of Cancer Stem Cells Differ Intrinsically in Their Patterns of Oxygen Metabolism

نویسندگان

  • Luke Gammon
  • Adrian Biddle
  • Hannah K. Heywood
  • Anne C. Johannessen
  • Ian C. Mackenzie
چکیده

The glycolytic response of hypoxic cells is primarily mediated by the hypoxia inducible factor alpha (HIF-1α) but even in the presence of abundant oxygen tumours typically show high rates of glycolysis. Higher levels of HIF-1α in tumours are associated with a poorer prognosis and up-regulation of markers of epithelial mesenchymal transition (EMT) due to HIF-1α actions. We have recently shown that EMT occurs within the CD44(high) cancer stem cell (CSC) fraction and that epithelial and EMT CSCs are distinguished by high and low ESA expression, respectively. We here show that hypoxia induces a marked shift of the CSC fraction towards EMT leading to altered cell morphology, an increased proportion of CD44(high)/ESA(low) cells, patterns of gene expression typical of EMT, and enhanced sphere-forming ability. The size of EMT fractions returned to control levels in normoxia indicating a reversible process. Surprisingly, however, even under normoxic conditions a fraction of EMT CSCs was present and maintained high levels of HIF-1α, apparently due to actions of cytokines such as TNFα. Functionally, this EMT CSC fraction showed decreased mitochondrial mass and membrane potential, consumed far less oxygen per cell, and produced markedly reduced levels of reactive oxygen species (ROS). These differences in the patterns of oxygen metabolism of sub-fractions of tumour cells provide an explanation for the general therapeutic resistance of CSCs and for the even greater resistance of EMT CSCs. They also identify potential mechanisms for manipulation of CSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolomics Analysis of Mesenchymal Stem Cells

Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the mechanism of different stem cells properties or stemness ability...

متن کامل

سلول های بنیادی سرطانی: ناهمگونی در سلول‌های سرطانی و راهکارهای نانوتکنولوژی در درمان آن‌ها

Cancer stem cells are believed to be responsible for the cancer-initiating step and resistance to chemotherapy drugs. Studies have shown that cancer stem cells are silent and have no metabolic activity. The main reasons behind tumors resistant to therapies are lack of activity of cancer stem cells and division of cancer cells. This cell population, like normal stem cells, is capable of self-ren...

متن کامل

Effect of Hesperetin on the level of reactive oxygen species (ROS) in gastric cancer stem cells: Short Communication

Intracellular reactive oxygen species (ROS) play an important role in cancer stem cell (CSC) function. Hesperetin (Hst) is a flavonoid that has been shown to affect cellular ROS level. The goal of this study was to investigate the effect of Hst on the level of ROS in gastric CSCs (GCSCs). MTT assay was used to evaluate cell survival. Cellular ROS level was measured using 2′,7′-dichlorofluoresci...

متن کامل

Mesenchymal Stem Cells Do Not Suppress Lymphoblastic Leukemic Cell Line Proliferation

Background: Several studies have demonstrated the immunosuppresive effects of mes-enchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this re-gard. Objective: To investigate if adipose derived MSCs could inhibit Jurkat lym-phoblastic leukemia T cell proliferation during coculture. Me...

متن کامل

Tumorigenicity of Esophageal Cancer Stem Cells (ECSCs) in nude mouse xenograft model

Background and objectives: Modeling cancer in vivo is a very important tool to investigate cancer pathogenesis and molecular mechanisms involved in cancer progression. Laboratory mice are the most common animal used for rebuilding human cancer in vivo. Cancer stem cells (CSCs) are the main reason of failure in cancer therapy because of tumor relapse and metastasis. Isolation of cancer stem cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013